In the format provided by the authors and unedited.

Diametric neural ensemble dynamics in parkinsonian and dyskinetic states

Jones G. Parker^{1,2,9}, Jesse D. Marshall^{1,3,5,9}, Biafra Ahanonu^{1,3}, Yu-Wei Wu⁴, Tony Hyun Kim¹, Benjamin F. Grewe^{1,6}, Yanping Zhang^{1,3}, Jin Zhong Li^{1,7}, Jun B. Ding⁴, Michael D. Ehlers^{2,8}* & Mark J. Schnitzer^{1,3}*

¹CNC Program, Stanford University, Stanford, CA, USA. ²Neuroscience Research Unit, Pfizer Inc., Cambridge, MA, USA. ³Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. ⁴Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA. ⁵Present address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA. ⁶Present address: Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland. ⁷Present address: Cegeim Bio-Engineering (Changchun) Co. Ltd., Jilin, China. ⁸Present address: Biogen, Cambridge, MA, USA. ⁹These authors contributed equally: Jones G. Parker, Jesse D. Marshall. *e-mail: mschnitz@stanford.edu; michael.ehlers@biogen.com

Supplementary Note

§1. How do manipulations of dopaminergic signaling affect SPN activity in behaving mice?

Although *in vitro* studies have suggested that activation of D1 dopamine receptors (D1Rs) elevates dSPN excitability, and that activation of D2 dopamine receptors (D2Rs) reduces iSPN excitability¹, it has been unknown how systemic administration of dopamine receptor agonists and antagonists modulates dSPN and iSPN activity in live animals. One cannot simply extrapolate the *in vitro* results, because D1Rs and D2Rs are widely expressed throughout the brain, implying that systemic administration of dopamine receptor agonists are likely to have more complex effects than those observed in brain slices.

In the striatum alone, cholinergic and GABAergic interneurons have dopamine receptors, as do the pre-synaptic terminals of nigrostriatal dopamine, corticostriatal glutamate and pallidostriatal GABA neurons²⁻⁹. Further, any manipulation of striatal excitability is likely to have complex effects on feedback loops involving the basal ganglia, thalamus and cortex, making it hard to predict the effects of dopamine receptor agonists or antagonists on SPN activity in behaving animals.

Highlighting this difficulty, predictions based on SPN-autonomous dopamine receptor signaling do not fully explain several of the pharmacological effects that we observed. For instance, before 6-OHDA lesion, D1R agonism, D2R agonism and D2R antagonism all suppressed dSPN activity (**Extended Data Fig. 7d–f**). However, the vast majority (>95%) of dSPNs do not express D2Rs^{10,11}, and D1R agonism enhances dSPN excitability *in vitro*¹, implying that for all three of these drugs the straightforward predictions fail. Thus, what might explain these observations?

In §2–4 below, we consider how systemic, dopaminergic manipulations may exert their effects on SPN activity based on the striatum's microcircuitry and the more extended circuitry of the basal ganglia. The discussion has three parts: (§2) Pharmacological effects in healthy animals;

(§3) Effects of dopamine depletion; and (§4) Pharmacological effects in hemi-parkinsonian mice.

§2. Pharmacological effects in healthy animals.

Before dopamine depletion, we systemically administered D1R- and D2R-selective agonists and antagonists to a subset of our mice (**Fig. 1a, Extended Data Fig. 7**). Strikingly, though most dSPNs do not express D2Rs^{10,11}, D2R agonism and antagonism both suppressed dSPN activity (**Extended Data Fig. 7d, f**). Further, D1R agonism suppressed activity in both dSPNs and iSPNs (**Extended Data Fig. 7d–f**), which was surprising since D1R activation enhances dSPN excitability *in vitro*¹, and almost all iSPNs lack D1Rs^{10,11}.

A straightforward explanation for the suppression of dSPN activity by D2R agonism is that D2R agonists inhibit dopamine neurons⁵, which could thereby reduce the level of D1R signaling through endogenous dopamine release. Consistent with this proposal, D2R agonism did not inhibit dSPNs after the lesion of dopamine neurons (**Fig. 4d–f**).

By comparison, a variety of mechanisms might account for the suppression of dSPN activity by D2R antagonism. One possibility is that D2R antagonism facilitates the collateral inhibition of dSPNs by iSPNs¹². Another possibility is that the antagonism of D2Rs on cholinergic interneurons and GABAergic pallidostriatal terminals might also have contributed to the decline of dSPN activity^{3,8,9,13,14}.

The finding that systemic D1R agonism suppressed both dSPNs and iSPNs is more perplexing. Given that the agonist we used, SKF81297, also binds to D5-dopamine receptors, this finding could result from D5R agonism in fast-spiking interneurons⁴. Higher doses of a D1R agonist might overcome this type of inhibitory effect, although we did not test this idea in healthy, non-lesioned mice.

§3. Effects of dopamine depletion.

Dopamine depletion via 6-OHDA lesion suppressed dSPN activity (**Fig. 3d–f**), which is consistent with the *in vitro* finding that D1R signaling enhances the excitability of these cells¹. Thus, the loss of D1R-mediated signaling after dopamine depletion provides a straightforward explanation for the resulting persistent decline in dSPN activity, but other adaptations could also play a role. For example, a reduction in dSPN dendritic arborization after 6-OHDA lesion could further diminish the excitatory drive to dSPNs¹⁵ and is consistent with the decline in striatal neuropil fluorescence in D1-Cre mice after dopamine depletion (**Extended Data Fig. 5d**). The loss of dopamine could also suppress dSPNs by augmenting cholinergic interneuron activity^{13,16}, enhancing pallido-striatal GABA transmission^{8,9,14}, reducing thalamo-striatal or cortico-striatal input via circuit-mediated feedback, or through decreases in thalamo-striatal innervation¹⁷.

iSPNs were initially hyperactive after 6-OHDA lesion, but this effect was reduced by two weeks after dopamine deletion, when iSPN activity was uncoupled from movement and decorrelated in space and time (**Fig. 3d–j**). The initial hyperactivity of iSPNs is consistent with a decline in D2R-mediated signaling, which *in vitro* normally reduces iSPN excitability¹. However, reduced collateral SPN connectivity¹² or reduced pallido-striatal feedback inhibition^{55,56,58} could also contribute to iSPN hyperactivity. As a caveat, although mice that received saline infusions did not exhibit the same locomotor deficits as mice that received 6-OHDA (**Extended Data Fig. 5c**), in principle there could be inflammatory or other post-operative responses specific to 6-OHDA infusion that somehow influenced striatal dynamics one day after the infusion.

Although iSPN activity rates remained persistently elevated in resting mice after dopamine depletion, there are several possible compelling explanations for why iSPN activity rates during movement re-normalized in the days after the 6-OHDA lesion. After dopamine depletion, iSPNs undergo many cellular-level changes not seen in dSPNs to the same extent. iSPNs lose dendritic

spines and cortico-striatal inputs^{15,18,19}, GABAergic connections onto iSPNs from fast-spiking interneurons are selectively increased after 6-OHDA lesions²⁰, and excitatory thalamo-cortical inputs are reduced^{9,17}. Importantly, by diminishing cortico-striatal coupling these changes in connectivity and structural plasticity may also cause iSPN activity to become uncoupled from movement and to lose their spatiotemporal coordination (**Fig. 3g–j**).

§4. Pharmacological effects after unilateral lesion of SNc dopamine neurons.

After unilateral loss of dopamine neurons, both D1R and D2R agonists elevated dSPN activity (**Fig. 4**). Although this effect of D1R agonism is predicted by the rate-model, as discussed above (**§2**) this was not the case before dopamine depletion (**Extended Data Fig. 7d, f**). One possible explanation for this difference is increased D1R sensitivity in dSPNs after 6-OHDA lesion^{10,21}.

A likely explanation for the different effect of the D2R agonist on dSPN activity after dopamine depletion is the absence of dopamine neuron autoreceptor engagement⁵, which in normal mice may have led to a drop in D1R signaling in dSPNs (**Extended Data Fig. 7d, f**). Without this autoreceptor engagement, multiple other D2R-dependent effects might emerge that further elevate dSPN activity. For example, D2R agonists might disinhibit dSPNs by suppressing cholinergic interneurons^{13,16} or diminishing collateral inhibition from iSPNs, although this collateral inhibition generally declines after 6-OHDA lesion¹².

Another notable difference in the pharmacological results attained before versus after dopamine depletion was that after 6-OHDA lesion, D2R agonism substantially enhanced spatiotemporal coordination in both dSPNs and iSPNs (**Fig. 4h**). In iSPNs, this might have resulted from autonomous D2R activation, which would be similar to the presumed means by which the dopamine derived from L-DOPA activates D2Rs in iSPNs²². Notably, like D2R agonism, L-DOPA also increased the proximal co-activity of iSPNs in lesioned mice (**Fig. 4h**).

It is less clear why D2R agonism enhanced the spatiotemporal coordination of dSPN activity (**Fig. 4h**), but this could result from an attenuation of cholinergic input or of GABAergic pallidostriatal feedback transmission^{8,9,13,14,16}. Notably, D2R agonism elevates dSPN activity without reducing the spatiotemporal coordination of these cells, which might partly explain why D2R agonists have a lower propensity than L-DOPA to cause dyskinesia in PD patients²³. As a caveat to all of our studies in parkinsonian mice, given the system route of drug administration and the unilateral loss of dopamine neurons in our model, drug effects in the contralateral striatum or even outside of striatum cannot be ruled out as possible explanations for the phenomena we report. Nonetheless, the greatest density of dopamine receptors in the brain is in striatum²⁴, so it is safe to assume that effects on dopamine receptor signaling in striatum played a major role in the dynamics we observed.

The effects of a dyskinesiogenic dose of L-DOPA on dSPN and iSPN activity rates were consistent with the idea that dopamine respectively increases and decreases the excitability of these two cell types (**Fig. 5c–e**). However, such a high dose of L-DOPA also de-correlated dSPN activity and uncoupled it from movement (**Fig. 5f, g**). Strikingly, these changes paralleled those of iSPNs after dopamine depletion (**Figs. 4i, 5h**).

The parallel nature of these findings may reflect common mechanisms by which SPN activity can become spatiotemporally de-correlated. Specifically, 6-OHDA lesions induce a selective loss of dendritic spines in iSPNs; L-DOPA induced dyskinesia (LID) reverses this spine deficit, but also causes a selective loss of spines in dSPNs¹⁵. If these congruent structural changes contribute to the de-correlation of SPN activity, and if this de-correlation contributes to motor symptoms, then the molecular pathways controlling SPN structural plasticity may represent novel therapeutic targets for treating PD and LID.

Supplementary Methods

In vitro electrophysiological and Ca^{2+} imaging studies in striatal tissue slices. Using standard techniques²⁵, we made oblique horizontal brain slices (300-µm thickness) containing the dorsal striatum from D1-Cre and A2A-Cre mice >3 weeks after viral injection. In brief, we anesthetized mice with isofluorane before decapitation. We then immersed the brain in chilled artificial cerebrospinal fluid (ACSF) containing 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl₂, 1.25 mM NaH₂PO₄, 1 mM MgCl₂, 25 mM NaHCO₃ and 15 mM D-glucose (300–305 mOsm). We prepared brain slices with a vibrating microtome (Leica VT1200 S), allowed them to equilibrate in ACSF at 34 °C for 30 min and then at room temperature (20–22 °C) for at least another 30 min, and then transferred the slices to a recording chamber. We completed all slice experiments within 5 h of brain extraction. We saturated all solutions with 95% O₂ and 5% CO₂.

The recording chamber for holding an individual brain slice during the dual optical and electrophysiological studies was mounted on an upright microscope (Olympus BX-51). While continuously perfusing the slice with ACSF (2–4 mL/min; 30–31°C), we visually identified GCaMP6m-expressing striatal SPNs via infrared differential interference contrast (DIC) and epi-fluorescence imaging using a water-immersion objective lens (40× magnification; 0.8 numerical aperture; Olympus).

To attain the same numerical aperture (NA) as that of the miniature microscope used in freely behaving mice, we mounted an adjustable iris at the back aperture of the objective and reduced the effective NA to 0.5. We used a broad-spectrum light source (Lambda XL, Sutter), and filter sets with excitation (470–490 nm) and emission (515–550 nm) pass bands suitable for imaging GCaMP6m. We imaged striatal Ca²⁺ transients at a frame acquisition rate of 20 Hz, using a scientific-grade CMOS camera (ORCA-Flash 4.0 LT, Hamamatsu Photonics) and Micro-Manager software (NIH)²⁶.

We obtained whole-cell current-clamp recordings of GCaMP6m-expressing SPNs using a patch pipette (3–5 M Ω) filled with a solution containing 135 mM KCH₃SO₃, 5 mM KCl, 10 mM HEPES, 8 mM Na₂-Phosphocreatine, 0.3 mM Na₂GTP, and 4 mM MgATP (pH 7.2–7.3, 285–290 mOsm). We measured each cell's series resistance by injecting hyperpolarizing pulses (–5 mV, 100 ms). All series resistances were <20 M Ω . In current clamp recording mode, we applied bridge balance to compensate series resistance. We adjusted the resting membrane potential to between -65 and –60 mV to mimic the resting membrane potential of SPNs *in vivo*²⁵ and to facilitate action potential generation upon injection of current pulses (1 nA, 1 ms pulses; 1 to 10 pulses delivered at 5, 10, 20, 50 or 100 Hz). We obtained recordings using a Multiclamp 700B (Molecular Devices, USA) patch clamp amplifier. We filtered the signals at 2.2 kHz and digitized them at 10 kHz with a data acquisition card (NI PCI-6221, National Instruments). We recorded and monitored the data using WinWCP software (Strathclyde Electrophysiology Software), and then analyzed it offline using Clampfit 10.0 (Molecular Devices).

Two-photon Ca²⁺ imaging in behaving mice. We used mice expressing the red fluorophore tdTomato in dSPNs and GCaMP6m in both SPN types (see **Mice** in **Methods**) after implantation of an optical guide tube and GRIN microendoscope in the dorsomedial striatum (see **Surgeries** in **Methods**). We head-fixed the mice via their implanted head bar beneath the microscope objective lens carrier of a custom-built two-photon microscope²⁷. While head-restrained, the mice were free to walk or run on a plastic running wheel (13.6 cm diameter; Innowheel, Innovive). A rotary encoder (HB5M-500-236-NE-S-D, US Digital) provided a readout of the wheel revolutions and hence of the mouse's running velocity. We recorded the encoder signals along with the timing pulses from the microscope's frame clock using a digital data acquisition system (Logic 8, Saleae).

The two-photon microscope was equipped with a resonant galvanometer laser-scanning mirror (CRS 8K, Cambridge Technologies), allowing a 30-Hz frame acquisition rate (512×512

pixels) under the control of ScanImage 5.2 software²⁸ (Vidrio Technologies). A wavelength-tunable Ti:sapphire laser (Mai Tai BB, Spectra Physics) provided ultrashort-pulsed illumination with a center wavelength of 920 nm. We adjusted the laser illumination power entering the microscope so that ~50 mW reached the specimen. We optically aligned a 1.0 NA, 20× water-immersion objective lens (XLUMPlanFL N, Olympus) to the GRIN microendoscope implanted within the mouse. We detected fluorescence signals using a GaAsP photomultiplier tube (H10770PA-40, Hamamatsu) and band-pass fluorescence emission filters (FF01-520/60 for GCaMP, FF01-590/36 for tdTomato; Semrock).

To acquire volumetric imaging data from four different axial planes in the brain with near simultaneity, we mounted the microscope objective lens on a piezo-electric objective scanner (P-725.4CD, Physik Instrumente). We used the ScanImage software to generate a 6-Hz sawtooth voltage wave for the axial movement of the objective lens, leading to a volume acquisition rate of 6 Hz. The four image planes in each volume were offset by 15 μ m. Ca²⁺ imaging sessions lasted 18–25 min. To distinguish dSPNs from iSPNs in the analyses of Ca²⁺ activity, we acquired 100 volume scans of the red fluorescence from the tdTomato-expressing dSPNs, at the same four image planes and using the same scanning parameters as for Ca²⁺ imaging.

Similarities of the neural ensembles activated on movements of different types. To evaluate statistically the relative similarity in the neural ensembles activated on movement bouts of either the same or different types, or during baseline periods, we used the Jaccard similarity index (Extended Data Figs. 3d, e, 8d–g). This is the same statistical index used to characterize cells' pairwise co-activity levels (see Determinations of cells' pairwise co-activity levels in Methods), and as above we chose it for its insensitivity to cells' instances of inactivity.

We computed the mean value of the Jaccard index, averaged across all possible pairs of movement bouts drawn from the two different movement types, based on the identities of the specific cells activated on each bout. Cells were defined as active if they had at least one Ca^{2+} event during the interval [-1 s, 2 s] relative to movement onset. For comparisons to baseline periods, cells were defined as active during baseline if they had at least one Ca^{2+} event during the interval [-4 s, -1 s] relative to movement onset.

Using these same time intervals to classify a cell as active or not, we determined the weighted average distance, D_{km} , between cells on different movement types k and m as:

$$\frac{\sum_{i=1}^{N} \sum_{j=1}^{N} f_i^k f_j^m d_{ij}}{\sum_{i=1}^{N} \sum_{j=1}^{N} f_i^k f_j^m}$$

where f_i^k is the mean activity rate for cell *i* in movement type *k*, *N* is the total number of cells, and d_{ij} is the distance between cells *i* and *j*. We then compared the mean weighted distance between the cells that were active during two different types of movement to the same quantity determined under the null hypothesis that the spatial separations of the active cells were independent of movement type. For the latter determination, we created shuffled datasets in which we randomly permuted each cell's firing rate between the two movement types, and we averaged the results over twenty-five different shuffled datasets. We normalized each distance value (**Extended Data Figs. 3f** and **8h–k**) by taking the actual mean value, subtracting the mean value determined under the null hypothesis, and then dividing this difference by the standard deviation of the distance across the twenty-five shuffled datasets.

Computational simulations of SPN activity traces. To examine the temporal accuracy with which we could use Ca^{2+} events in SPNs to determine the times of the accompanying action potentials, we created artificial datasets based on the fluorescence responses to action potentials observed in our dual electrical-optical recordings *in vitro* and on basic facets of the fluorescence recordings *in vivo*.

We computationally generated 100 artificial sets of dual electrical-optical recordings (30-

min duration; 1-kHz sampling rate) of SPN spiking and intracellular Ca²⁺ activity (as transduced by GCaMP6m). We set the mean spike rate in the simulations to that of the mean Ca²⁺ event rate observed *in vivo* (**Extended Data Fig. 11**). The simulated Ca²⁺ transient waveforms had amplitudes (5% $\Delta F/F$) approximately equal to the mean amplitude observed *in vivo* (**Extended Data Fig. 1m**). The time-constants governing the rise and fall of the simulated Ca²⁺ transients were approximately those observed *in vitro* for single action potentials: $\tau_{on} = 80$ ms and $\tau_{off} = 500$ ms (**Extended Data Fig. 1g, h**).

To match the properties of the simulated Ca^{2+} traces to those acquired using the miniature microscope, we down-sampled the simulated traces to 5 Hz by linear interpolation. We then added Gaussian random noise ($\sigma = 0.1\% \Delta F/F$) so that the Ca^{2+} transients had approximately the same event detection fidelity value ($d' \sim 20$) as those in the real data (**Extended Data Fig. 5f-h**). We applied the same procedures for detecting Ca^{2+} events and assigning their occurrence times as used for the real data (see **Detection of Ca^{2+} transients** in **Methods**). We found the time differences between the simulated spikes and those determined for the corresponding Ca^{2+} events using our event detection algorithm. This comparison revealed that the times assigned to Ca^{2+} events were 23 ± 4 ms (s.e.m.) after the real spike times, which was statistically indistinguishable from zero (P = 0.6 compared to zero offset; sign test; N = 5823 simulated spikes), indicating the absence of systematic bias. The spike timing error was ± 305 ms (s.d.).

References for Supplementary Information.

- Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. *Science* 321, 848-851 (2008).
- Yan, Z., Song, W.J. & Surmeier, J. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. *J Neurophysiol* 77, 1003-1015 (1997).
- Straub, C., Tritsch, N.X., Hagan, N.A., Gu, C. & Sabatini, B.L. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. *J Neurosci* 34, 8557-8569 (2014).
- 4. Centonze, D. et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. *J Neurosci* **23**, 6245-6254 (2003).
- Lacey, M.G., Mercuri, N.B. & North, R.A. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. *J Physiol* 392, 397-416 (1987).
- 6. Bamford, N.S. et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. *Neuron* **42**, 653-663 (2004).
- Hersch, S.M. et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 15, 5222-5237 (1995).
- 8. Hoover, B.R. & Marshall, J.F. Molecular, chemical, and anatomical characterization of globus pallidus dopamine D2 receptor mRNA-containing neurons. *Synapse* **52**, 100-113 (2004).
- Bevan, M.D., Booth, P.A., Eaton, S.A. & Bolam, J.P. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. *J Neurosci* 18, 9438-9452 (1998).
- 10. Gerfen, C.R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. *Science* **250**, 1429-1432 (1990).

- Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. *Nature* 425, 917-925 (2003).
- 12. Taverna, S., Ilijic, E. & Surmeier, D.J. Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease. *J Neurosci* **28**, 5504-5512 (2008).
- Bernard, V., Normand, E. & Bloch, B. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. *J Neurosci* 12, 3591-3600 (1992).
- Mallet, N. et al. Dichotomous organization of the external globus pallidus. *Neuron* 74, 1075-1086 (2012).
- 15. Fieblinger, T. et al. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. *Nat Commun* **5**, 5316 (2014).
- Ding, J. et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. *Nat Neurosci* 9, 832-842 (2006).
- Smith, Y. et al. The thalamostriatal system in normal and diseased states. *Front Syst Neurosci* 8, 5 (2014).
- Stephens, B. et al. Evidence of a breakdown of corticostriatal connections in Parkinson's disease.
 Neuroscience 132, 741-754 (2005).
- Day, M. et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. *Nat Neurosci* 9, 251-259 (2006).
- 20. Gittis, A.H. et al. Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. *Neuron* **71**, 858-868 (2011).
- Gerfen, C.R., Miyachi, S., Paletzki, R. & Brown, P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. *J Neurosci* 22, 5042-5054 (2002).
- Marcott, P.F., Mamaligas, A.A. & Ford, C.P. Phasic dopamine release drives rapid activation of striatal D2-receptors. *Neuron* 84, 164-176 (2014).

- Jankovic, J. & Aguilar, L.G. Current approaches to the treatment of Parkinson's disease. *Neuropsychiatr Dis Treat* 4, 743-757 (2008).
- Bentivoglio, M. & Morelli, M. in Handbook of Chemical Neuroanatomy, Vol. 21. (eds. S.B. Dunnett, M. Bentivoglio, A. Björklund & T. Hökfelt) 1-107 (Elsevier, 2005).
- Wu, Y.W. et al. Input- and cell-type-specific endocannabinoid-dependent LTD in the striatum. *Cell reports* 10, 75-87 (2015).
- Edelstein, A.D. et al. Advanced methods of microscope control using muManager software. J Biol Methods 1, pii: e10 (2014).
- 27. Lecoq, J. et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. *Nat Neurosci* **17**, 1825-1829 (2014).
- Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. *Biomed Eng Online* 2, 13 (2003).

Supplementary Table 1 | Summary of statistical results associated with the figures and extended data figures.

Figure	Comparison	Test	p-value	N-value	Num. cells	Num. Mice
2a	dSPN event rate (moving vs. resting)	Sign	1.52E-05	17 (mice)	5312	17
Za	iSPN event rate (moving vs. resting)	Sign	9.54E-07	21 (mice)	5509	21
	dSPN event rate change (moving vs. resting)	Wilcoxon sign-rank	1.50E-199	2899 (movement bouts)	5312	17
0	iSPN event rate change (moving vs. resting)	Wilcoxon sign-rank	2.75E-217	3559 (movement bouts)	5509	21
2c	dSPN spatiotemporal coordination change (moving vs. resting)	Wilcoxon sign-rank	3.48E-13	2282 (movement bouts)	5312	17
	iSPN spatiotemporal coordination change (moving vs. resting)	Wilcoxon sign-rank	3.90E-14	2587 (movement bouts)	5509	21
	dSPN-dSPN Jaccard index, relative to temporally shuffled comparisons (as a	n/a	n/a	n/a	1.02E+06	17
2d	function of pairwise cell distance)				(cell pairs)	
	iSPN-iSPN Jaccard index, relative to temporally shuffled comparisons (as a	n/a	n/a	n/a	848025	21
	function of pairwise cell distance)				(cell pairs)	
	Resting proximal dSPN-dSPN	Wilcoxon			4.50E+05	
	Jaccard index (actual vs. temporally shuffled)	signed-rank	2.93E-04	17 (mice)	(proximal cell pairs)	17
	Resting proximal iSPN-iSPN Jaccard	Wilcoxon			3.62E+05	0.1
2-	index (actual vs. temporally shuffled)	signed-rank	5.96E-05	21 (mice)	(proximal cell pairs)	21
2e	Moving proximal dSPN-dSPN Jaccard	Wilcoxon			4.50E+05	
	index (actual vs. temporally shuffled)	signed-rank	2.93E-04	17 (mice)	(proximal cell pairs)	17
	Moving proximal iSPN-iSPN Jaccard	Wilcoxon			3.62E+05	
	index (actual vs. temporally shuffled)	signed-rank 5.96E-05		21 (mice)	(proximal cell pairs)	21

Figure	Comparison	Test	p-value	N-value	Num. Mice
	Distance traveled (Post 1-d vs. Pre-lesion)	Wilcoxon signed-rank	1.00E-04	25 (mice)	25
3с	Distance traveled (Post 14-d vs. Pre-lesion)	Wilcoxon signed-rank	2.10E-03	25 (mice)	25
	Distance traveled (Post 14-d vs. Post 1-d)	Wilcoxon signed-rank	1.28E-02	25 (mice)	25
	Resting dSPN event rate (Post 1d vs. Pre-lesion)	Wilcoxon signed-rank	3.39E-29	14 speed bins per mouse	12
	Resting dSPN event rate (Post 14-d vs. Pre-lesion)	Wilcoxon signed-rank	5.12E-29	14 speed bins per mouse	12
	Resting iSPN event rate (Post 1d vs. Pre-lesion)	Wilcoxon signed-rank	4.98E-29	14 speed bins per mouse	13
3f	Resting iSPN event rate (Post 14-d vs. Pre-lesion)	Wilcoxon signed-rank	3.22E-17	14 speed bins per mouse	13
31	Moving dSPN event rate (Post 1d vs. Pre-lesion)	Wilcoxon signed-rank	1.04E-43	24 speed bins per mouse	12
	Moving dSPN event rate (Post 14-d vs. Pre-lesion)	Wilcoxon signed-rank	1.03E-44	24 speed bins per mouse	12
	Moving iSPN event rate (Post 1d vs. Pre-lesion)	Wilcoxon signed-rank	3.39E-36	24 speed bins per mouse	13
	Moving iSPN event rate (Post 14-d vs. Pre-lesion)	Wilcoxon signed-rank	1.40E-01	24 speed bins per mouse	13
	dSPN event rate change (moving vs. resting; Post 14-d)	Wilcoxon signed-rank	5.02E-56	2848 (movement bouts)	12
	dSPN event rate change at movement (Post 14-d vs Pre-lesion)	Wilcoxon rank-sum	9.78E-62	1905 Pre-lesion and 2848 Post 14-d (movement bouts)	12
	iSPN event rate change (moving vs. resting; Post 14-d)	Wilcoxon signed-rank	4.29E-22	3110 (movement bouts)	13
3g	iSPN event rate change at movement (Post 14-d vs Pre-lesion)	Wilcoxon rank-sum	1.08E-111	2331 Pre-lesion and 3110 Post 14-d (movement bouts	13
Jy	dSPN spatiotemporal coordination change (moving vs. resting; Post 14-d)	Wilcoxon signed-rank	5.81E-09	1326 (movement bouts)	12
	dSPN spatiotemporal coordination change at movement (Post 14-d vs Pre-lesion)	Wilcoxon rank-sum	3.91E-01	1494 Pre-lesion and 1326 Post 14-d (movement bouts)	12
	iSPN spatiotemporal coordination change (moving vs. resting; Post 14-d)	Wilcoxon signed-rank	2.98E-01	2957 (movement bouts)	13
	iSPN spatiotemporal coordination change at movement (Post 14-d vs. Pre-lesion)	Wilcoxon rank-sum	1.29E-09	1778 Pre-lesion and 2957 Post 14-d (movement bouts	13

Figure	Comparison	Test	p-value	N-value	Num. Mice
3h	D1-Cre event-triggered average speed (event vs. baseline; Post 14-d)	Wilcoxon signed-rank	3.16E-303 11 ± 1% (effect size; mean ± s.e.m)	5323 (cells)	12
Sn	A2A-Cre event-triggered average speed (event vs. baseline; Post 14-d)	Wilcoxon signed-rank	2.00E-03 0.8 ± 0.3% (effect size; mean ± s.e.m)	5529 (cells)	13
	dSPN event rate change at movement (Post 1-d vs. Pre-lesion)	Wilcoxon rank-sum	2.85E-02	12 (mice)	12
3i	dSPN event rate change at movement (Post 14-d vs Pre-lesion)	Wilcoxon rank-sum	7.65E-02	12 (mice)	12
51	iSPN event rate change at movement (Post 1-d vs. Pre-lesion)	Wilcoxon rank-sum	7.95E-02	13 (mice)	13
	iSPN event rate change at movement (Post 14-d vs. Pre-lesion)	Wilcoxon rank-sum	8.90E-07	13 (mice)	13
	Moving proximal dSPN-dSPN Jaccard index relative to temporally shuffled (Post 1-d vs. Pre-lesion)	Wilcoxon rank-sum	1.04E-04	96 Pre-lesion and 96 Post 1-d (co-activity values)	12
2:	Moving proximal dSPN-dSPN Jaccard index relative to temporally shuffled (Post 14-d vs. Pre-lesion)	Wilcoxon rank-sum	1.76E-04	96 Pre-lesion and 384 Post 14-d (co-activity values)	12
3j	Moving proximal iSPN-iSPN Jaccard index relative to temporally shuffled (Post 1-d vs. Pre-lesion)	Wilcoxon rank-sum	3.42E-12	104 Pre-lesion and 104 Post 1-d (co-activity values)	13
	Moving proximal iSPN-iSPN Jaccard index relative to temporally shuffled (Post 14-d vs. Pre-lesion)	Wilcoxon rank-sum	5.16E-38	104 Pre-lesion and 416 Post 14-d (co-activity values)	13

Figure	Comparison		Test		p-value	N compared	Num. Mice
	Contralateral Bias during after drug or vehi				see values below for pairwise comparisons	7 D1-Cre and 6 A2A-Cre (mice)	13
		Saline	Quinpirole 1 mg/kg	Quinpirole 6 mg/kg	SKF 1 mg/kg	SKF 6 mg/kg	L-DOPA 1 mg/kg
	Pre-lesion	2.40E-03					
	Quinpirole 1 mg/kg	1.70E-03					
4a	Quinpirole 6 mg/kg	2.40E-03	2.10E-02				
	SKF 1 mg/kg	2.00E-04	8.10E-03	2.73E-01			
	SKF 6 mg/kg	2.00E-04	2.00E-04	2.00E-04	1.20E-03		
	L-DOPA 1 mg/kg	5.00E-04	3.27E-02	4.70E-01	6.85E-01	1.70E-03	
	L-DOPA 6 mg/kg	7.00E-04	2.40E-03	1.20E-03	1.10E-01	1.50E-03	1.05E-02

Figure	Compari	son	Tes	t	p-v	alue	N-v	alue	Num	. Mice
	Calcium event rates during periods of rest Pre-lesion, or after drug injection Post-lesion (vs. saline)		vviicoxon signed-rank, Dunn-Sidak see values		s below for omparisons	7 D1-Cre and 6 A2A-Cre mice (14 speed bins per mouse)		7 D1-Cre and 6 A2A-Cre		
			dSPNs					iSPNs		
		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg
	Pre-lesion	8.33E-18				Pre-lesion	5.36E-07			
4e	Quinpirole 1 mg/kg	1.77E-16				Quinpirole 1 mg/kg	9.36E-04			
	Quinpirole 6 mg/kg	1.17E-17	6.81E-01			Quinpirole 6 mg/kg	5.18E-13	4.97E-14		
	SKF 1 mg/kg	8.86E-18				SKF 1 mg/kg	2.30E-01			
	SKF 6 mg/kg	1.39E-16	1	2.27E-01]	SKF 6 mg/kg	1.20E-02	1 [3.70E-04	
	L-DOPA 1 mg/kg	3.73E-12			-	L-DOPA 1 mg/kg	2.78E-12			
	L-DOPA 6 mg/kg	8.33E-18			4.83E-07	L-DOPA 6 mg/kg	1.28E-09			8.17E-17

Figure	Compari	son	Tes	st	p-va	alue	N-v	alue	Num	. Mice
	Calcium event rates during periods of movement Pre-lesion, or after drug injection Post-lesion (vs. saline)				s below for omparisons	7 D1-Cre and 6 A2A-Cre mice (24 speed bins per mouse)		7 D1-Cre and 6 A2A-Cre		
	dSPNs							iSPNs		
		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg
	Pre-lesion	2.55E-29				Pre-lesion	4.14E-01			
4f	Quinpirole 1 mg/kg	7.47E-12				Quinpirole 1 mg/kg	5.43E-03			
	Quinpirole 6 mg/kg	7.44E-21	2.42E-02			Quinpirole 6 mg/kg	9.42E-13	1.61E-16		
	SKF 1 mg/kg	2.01E-28				SKF 1 mg/kg	5.36E-04			
	SKF 6 mg/kg	5.16E-19		8.29E-01		SKF 6 mg/kg	1.23E-01		4.10E-03	
	L-DOPA 1 mg/kg	7.90E-24]			L-DOPA 1 mg/kg	5.52E-23			
	L-DOPA 6 mg/kg	1.81E-28			4.79E-02	L-DOPA 6 mg/kg	1.70E-06			4.47E-21

Figure	Compari	son	Tes	t	p-va	alue	N-v	alue	Num	n. Mice
	Calcium event rate change at motion onset Pre-lesion, or after drug injection Post-lesion (vs. saline)		Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons see values pairwise correction		s below for omparisons	11 time bins per mouse per treatment		7 D1-Cre and 6 A2A-Cre mice		
	dSPNs							iSPNs		
		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg
	Pre-lesion	8.77E-05				Pre-lesion	1.72E-12			
4g	Quinpirole 1 mg/kg	1.06E-03				Quinpirole 1 mg/kg	5.17E-01			
	Quinpirole 6 mg/kg	3.05E-02	9.06E-01			Quinpirole 6 mg/kg	5.17E-01	2.44E-01		
	SKF 1 mg/kg	7.61E-01				SKF 1 mg/kg	7.84E-02			
	SKF 6 mg/kg	4.89E-03] [8.86E-03		SKF 6 mg/kg	7.27E-07		8.84E-04	
	L-DOPA 1 mg/kg	2.05E-02			-	L-DOPA 1 mg/kg	6.81E-07			_
	L-DOPA 6 mg/kg	6.17E-05	1		7.69E-04	L-DOPA 6 mg/kg	5.43E-10	1		9.85E-09

Figure	Ire Comparison		Tes	t	p-value		N-value		Num. Mice	
	Proximal pairwise Jaccard index during movement relative to temporally shuffled Pre-lesion, or after drug injection Post-lesion (vs. saline)		Wilcoxon signed-rank, Dunn-Sidak see values correction for multiple comparisons pairwise co		s below for omparisons	8 bins of cell-cell separation per mouse		7 D1-Cre and 6 A2A-Cre mice		
			dSPNs					iSPNs		
		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg		Saline	Quinpirole 1 mg/kg	SKF 1 mg/kg	L-DOPA 1 mg/kg
4h	Pre-lesion	7.69E-07				Pre-lesion	1.63E-09			
411	Quinpirole 1 mg/kg	1.38E-02				Quinpirole 1 mg/kg	4.51E-07			
	Quinpirole 6 mg/kg	5.03E-05	5.68E-01			Quinpirole 6 mg/kg	6.43E-09	8.49E-02		
	SKF 1 mg/kg	1.31E-03				SKF 1 mg/kg	1.95E-03			
	SKF 6 mg/kg	1.47E-03	1 [7.27E-02]	SKF 6 mg/kg	8.30E-02] [5.80E-01	
	L-DOPA 1 mg/kg	1.61E-02]			L-DOPA 1 mg/kg	4.73E-01			
	L-DOPA 6 mg/kg	6.64E-09			2.95E-06	L-DOPA 6 mg/kg	8.56E-05			3.31E-04

Figure	Comparison	Test	p-value	N-value	
	Contralateral Bias during first 40 min after drug or vehicle injection	Wilcoxon signed-rank	see values below for pairwise comparison	13 mice	
		Saline	L-DOPA 1 mg/kg	L-DOPA 6 mg/kg	
	L-DOPA 1 mg/kg	5.00E-04			
	L-DOPA 6 mg/kg	7.00E-04	1.05E-02		
	L-DOPA 10 mg/kg	2.00E-04	5.00E-04	3.27E-02	
	Comparison	Test	p-value	N-value	
5a	AIMS total during first 40 min after drug or vehicle injection	see below	see values below for pairwise comparison	13 (L-DOPA) and 5 (saline) mice	
		Wilcoxon rank-sum	Wilcoxon signed-rank		
		Saline	L-DOPA 1 mg/kg	L-DOPA 6 mg/kg	
	L-DOPA 1 mg/kg	0.1218		•	
	L-DOPA 6 mg/kg	0.0107	0.002		
	L-DOPA 10 mg/kg	0.0001	0.0002	0.0132	

Figure	Comp	arison	Test	p-value	N-value			
	drug or vehi	rst 40 min after icle injection vs. saline)	Wilcoxon rank-sum	see values below for pairwise comparison	13 (L-DOPA) and 5 (saline) mice			
			Saline					
5b		Limb	Axial	Orofacial	Total			
	L-DOPA 1 mg/kg	0.5752	0.2778	0.3203	0.1218			
	L-DOPA 6 mg/kg	L-DOPA 6 mg/kg 0.2778		0.0449	0.0107			
	L-DOPA 10 mg/kg	L-DOPA 10 mg/kg 0.0359		0.0001	0.0001			

Figure	Comparison	Test	p-value	N-value
5d	dSPN event rates during periods of rest. Pre-lesion or after drug injection Post- lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	8.33E-18 (Pre-lesion) 8.33E-18 (L-DOPA)	14 speed bins <0.5 cm/sec for 7 D1-Cre mice
5d	iSPN event rates during periods of rest, Pre-lesion or after drug injection Post- lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	5.35E-07 (Pre-lesion) 1.71E-15 (L-DOPA)	14 speed bins <0.5 cm/sec for 6 A2A-Cre mice
5e	dSPN event rates during periods of movement, Pre-lesion or after drug injection Post-lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	2.55E-29 (Pre-lesion) 2.55E-29 (L-DOPA)	24 speed bins >0.5 cm/sec for 7 D1-Cre mice
5e	iSPN event rates during periods of movement, Pre-lesion or after drug injection Post-lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	4.14E-01 (Pre-lesion) 2.39E-18 (L-DOPA)	24 speed bins >0.5 cm/sec for 6 A2A-Cre mice
5f	dSPN event rate change at motion onset, Pre-lesion or after drug injection Post-lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	8.77E-05 (Pre-lesion) 1.69E-11 (L-DOPA)	11 time bins per mouse per treatment for 7 D1-Cre mice
5f	iSPN event rate change at motion onset, Pre-lesion or after drug injection Post-lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	1.72E-12 (Pre-lesion) 1.19E-11 (L-DOPA)	11 time bins per mouse per treatment for 6 A2A-Cre mice
5g	Proximal Jaccard index during movement in dSPN pairs, relative to temporally shuffled Pre-lesion or after drug injection Post-lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	7.69E-07 (Pre-lesion) 7.55E-11 (L-DOPA)	8 bins of cell-cell separation per mouse for 7 D1-Cre mice
5g	Proximal Jaccard index during movement in iSPN pairs, relative to temporally shuffled Pre-lesion or after drug injection Post-lesion (vs. saline)	Wilcoxon signed-rank, Dunn-Sidak correction for multiple comparisons	1.63E-09 (Pre-lesion) 4.78E-02 (L-DOPA)	8 bins of cell-cell separation per mouse for 6 A2A-Cre mice

Figure	Comparison	Test	Number of APs	p-value	N-value
			1	4.92E-01	
			2	5.02E-01	
			3	4.85E-01	
	O^{2+} the set of t	Two-way	4	4.57E-01	
Extended	Ca ²⁺ transient waveform amplitudes evoked	repeated	5	7.39E-01	9 dSPNs
Data	by different	measures ANOVA	6	5.05E-01	- and
1e	stimulus intensities	(mixed-design)	7	5.41E-01	8 iSPNs
		, J,	8	3.78E-01	-
			9	5.13E-01	-
			10	4.62E-01	-
			10	2.24E-01	
			2	2.24E-01 3.73E-01	-
	Area under the Ca ²⁺ transient waveform (AUC) evoked by different stimulus intensities	Two-way repeated measures ANOVA (mixed-design)	3	8.05E-01	9 dSPNs and 8 iSPNs
			4	1.84E-01	
Extended			5	3.59E-01	
Data			6	5.51E-02	
1f			7	4.75E-01	
			8	5.22E-01	
			9	4.15E-01	
			10	2.49E-01	
	Ca ²⁺ transient waveform	Two-way	2	5.89E-01	
	AUC evoked by different stimulus intensities	repeated measures	6	7.68E-01	6 dSPNs
Extended Data	(SKF vs. vehicle)	ANOVA	10	7.90E-01	
1i	Ca ²⁺ transient waveform	Two-way	2	9.39E-01	
	AUC evoked by different stimulus intensities	repeated measures	6	8.85E-01	6 iSPNs
	(quinpirole vs. vehicle)	ANOVA	10	9.73E-01	

Figure	Comparison	Test	Integration time (s)	p-value	N-value	Num. Mice	
	dSPN event-		0.2	2.61E-02			
	triggered average	Wilcoxon	0.6	1.68E-02	37 cross-		
		signed-rank	1	4.09E-02	correlations	16	
E de la de d	maximum speed offset (vs. zero offset)		1.4	4.24E-02	correlations		
Extended Data			1.8	6.24E-02			
2e	iCDN event		0.2 1.10E-04				
26	iSPN event-		Wilcoxon	0.6	1.02E-04	50 orooo	
		triggered average naximum speed offset	1	6.45E-04	52 cross- correlations	21	
	(vs. zero offset)		1.4	2.76E-04			
	(vs. zero onset)		1.8	2.73E-03			
	Event		0.2	1.20E-01			
Extended	Event-	Wilcovon	0.6	3.60E-01	37 (D1-Cre) and	16 (D1 Cro) and	
Data	2e speed (D1-Cre vs. A2A	Wilcoxon	1	4.40E-01	52 (A2A-Ćre)	16 (D1-Cre) and	
2e			1.4	2.70E-01	cross-correlations	21(A2A-Cre)	
	Cre)		1.8	3.70E-01			

Figure	Comparison	Test	p-v	alue	N-value	(bouts)	Num. Mice
	Fraction of dSPN		Forward	1.63E-09	Forward	492	
		Wilcoxon	Right	2.24E-09	Right	657	
	population activated		Left	1.63E-09	Left	810	17
Extended	(movement type vs. baseline)	signed-rank	Groom	4.64E-03	Groom	732	
Data	Daseline)		Rear	4.70E-04	Rear	204	-
3b	Fraction of iSPN		Forward	1.89E-11	Forward	790	
30	population activated	Wilcoxon	Right	6.65E-12	Right	785	-
	(movement type vs.	signed-rank	Left	2.90E-12	Left	1015	21
	baseline)		Groom	2.94E-01	Groom	792	
	Daseline)		Rear	6.62E-05	Rear	164	
		Wilcoxon signed-rank	Forward	1.74E-40	Forward	492	
	dSPN event rate		Right	1.50E-42	Right	657	17
	change at		Left	3.29E-67	Left	810	
Estended	movement		Groom	4.32E-11	Groom	732	
Extended	(moving vs. resting)		Rear	8.78E-07	Rear	204	
Data 3c	iSPN event rate		Forward	3.50E-65	Forward	790	
30		Wilcoxon	Right	3.23E-45	Right	785	
	change at		Left	3.14E-87	Left	1015	21
	movement	signed-rank	Groom	6.22E-16	Groom	792	
L	(moving vs. resting)		Rear	2.15E-09	Rear	164	_
Extended Data	dSPN ensemble similarity distribution for movement types (same vs. different)	Kolmogorov-Smirnov	1.37E-03		255 (di movem	me) and fferent) ent type uts	17
Data 3e	iSPN ensemble similarity distribution for movement types (same vs. different)	Kolmogorov-Smirnov	6.75E-03		315 (di movem	me) and fferent) ent type uts	21

Figure	Comparison	Test	p-va	alue	N-value	Num. Mice
Extended Data 4h	Mean time at which movement-evoked dSPN vs iSPN population activity exceeded their respective baseline values by ≥ 3 s.d.	Wilcoxon rank-sum	9.15	E-01	5 (mice)	5
Proximal SPN Jaccard	dSPN-dSPN	1.59E-02				
	index during running (actual vs. temporally	Wilcoxon rank-sum	iSPN-iSPN	3.17E-02	5 (mice)	5
	shuffled)		dSPN-iSPN	1.59E-02		
Extended Data 4k	Mean ratio of actual and	actual and iSPN-iSPN	0.22			
46	temporally shuffled proximal SPN Jaccard indices during running	Wilcoxon rank-sum	dSPN-dSPN vs. dSPN-iSPN	0.15	5 (mice)	5
	(compared between different cell-type pairs)		iSPN-iSPN vs. dSPN-iSPN	0.69		

Figure	Comparison	Test	p-va	alue	N-v	value	Num. Mice		
	Mean fluorescence in D1-Cre mice (before vs. after lesion)	Wilcoxon rank-sum	1.80	E-09	5 (mice)		5		
Extended Data	Mean fluorescence in A2A-Cre mice (before vs. after lesion)	Wilcoxon rank-sum	5.03	E-08	7 (r	nice)	7		
5d	Mean fluorescence in D1-Cre mice (after lesion)	Spearman's correlation	3.50	E-01	5 (r	nice)	5		
	Mean fluorescence in A2A-Cre mice (after lesion)	Spearman's correlation	8.33	E-02	7 (r	nice)	7		
Extended Data	Number of active dSPNs over time	Friedman ANOVA	5.06	E-02	5 (r	nice)	5		
5e	Number of active iSPNs over time	Friedman ANOVA	2.16	E-02	7 (mice)		7 (mice)		7
Extended Data	dSPN Δ <i>F/F</i> (Pre-lesion vs. Post 14-d)	Wilcoxon rank-sum	<2.22	E-308 3492 cells (Pre-lesion) 3734 cells (Post 14-d)		12			
5f	iSPN Δ <i>F/F</i> (Pre-lesion vs. Post 14-d)	Wilcoxon rank-sum	2.27E-47		3711 cells (Pre-lesion) 3332 cells (Post 14-d)		13		
Extended Data	dSPN event d' (Pre- lesion vs. Post 14-d)	Wilcoxon rank-sum	<2.22E-308		3492 cells (Pre-lesion) 3734 cells (Post 14-d)		12		
5g	dSPN event d' (Pre- lesion vs. Post 14-d)	Wilcoxon rank-sum	3.10	E-107	3711 cells (Pre-lesion) 3332 cells (Post 14-d)		13		
			Pre-lesion	1.33E-314	Pre-lesion	2027 (dSPNs)			
	Mean dSPN event d'	Wilcoxon	Post 14-d	n/a	Post 14-d	1968 (dSPNs)			
	(vs. Post 14-d)	rank-sum	L-DOPA	3.22E-155	L-DOPA	2010 (dSPNs)	5		
Extended			Quinpirole	1.44E-91	Quinpirole	1875 (dSPNs)			
Data			SKF Bro logion	1.42E-94 2.47E-75	SKF Dro locion	1770 (dSPNs)			
5h			Pre-lesion Post 14-d	2.47E-75 n/a	Pre-lesion Post 14-d	1943 (iSPNs) 2334 (iSPNs)			
	Mean iSPN event d'	Wilcoxon	L-DOPA	6.49E-74	L-DOPA	2393 (iSPNs)	7		
	(vs. Post 14-d)	rank-sum	Quinpirole	8.50E-182	Quinpirole	2074 (iSPNs)	- '		
			SKF	9.25E-85	SKF	1719 (iSPNs)			

Figure	Comparison	Test	p-va	alue	N-value	Num. Mice
	dSPN event rates during periods of rest Post 1-d	Wilcoxon	Post 1-d	6.44E-310	3732 (Pre-lesion) 2554 (Post 1-d)	12
Extended Data	or Post 14-d compared to Pre-lesion	rank-sum	Post 14-d	1.00E-314	3472(Post 14-d) cells	12
6a	iSPN event rates during periods of rest Post 1-d	Wilcoxon	Post 1-d	2.09E-165	3325 (Pre-lesion) 3818 (Post 1-d)	13
	or Post 14-d compared to Pre-lesion	rank-sum	Post 14-d	1.07E-109	3702 (Post 14-d) cells	
	dSPN event rates during periods of movement	Wilcoxon	Post 1-d	1.37E-158	3718 (Pre-lesion) 2554 (Post 1-d)	12
Extended Data	Post 1-d or Post 14-d compared to Pre-lesion	rank-sum	Post 14-d	5.99E-246	3351(Post 14-d) cells	
6b	iSPN event rates during periods of movement	Wilcoxon	Post 1-d	1.03E-52	3209 (Pre-lesion) 3533 (Post 1-d)	13
	Post 1-d or Post 14-d compared to Pre-lesion	rank-sum	Post 14-d	2.40E-10	3523 (Post 14-d) cells	
	dSPN event rates during rotarod performance	Wilcoxon	Post 1-d	9.41E-54	1930 (Pre-lesion) 712 (Post 1-d)	5 (Pre-lesion) 2 (Post 1-d) 5 (Post 14-d)
Extended Data	Post 1-d or Post 14-d compared to Pre-lesion	rank-sum	Post 14-d	6.33E-73	1672(Post 14-d) cells	
6c,d	iSPN event rates during rotarod performance	Wilcoxon	Post 1-d	1.50E-15	1731(Pre-lesion) 853 (Post 1-d)	7 (Pre-lesion) 3 (Post 1-d)
	Post 1-d or Post 14-d compared to Pre-lesion	rank-sum	Post 14-d	4.99E-03	1607 (Post 14-d) cells	7 (Post 14-d)
	Mean proximal dSPN-dSPN Jaccard index, normalized to temporally shuffled comparisons during rotarod perfomance (Post 1-d vs. Pre-lesion)	Wilcoxon rank-sum	8.66E-02		16 bins (8 per mouse)	2 (Pre-lesion) 2 (Post 1-d)
Extended Data	Mean proximal dSPN-dSPN Jaccard index, normalized to temporally shuffled comparisons during rotarod perfomance (Post 14-d vs. Pre-lesion)	Wilcoxon rank-sum	6.10	E-01	40 bins (8 per mouse)	5 (Pre-lesion) 5 (Post 14-d)
6e	Mean proximal iSPN-iSPN Jaccard index, normalized to temporally shuffled comparisons during rotarod perfomance (Post 1-d vs. Pre-lesion)	Wilcoxon rank-sum	4.40	E-01	24 bins (8 per mouse)	2 (Pre-lesion) 2 (Post 1-d)
	Mean proximal iSPN-iSPN Jaccard index, normalized to temporally shuffled comparisons during rotarod perfomance (Post 14-d vs. Pre-lesion)	Wilcoxon rank-sum	1.73E-17		56 bins (8 per mouse)	7 (Pre-lesion) 7 (Post 14-d)

Figure	Comparison	Test	p-va	alue	N-value	Num. Mice
	dSPN event rate at rest	Wilcoxon	SCH	2.69E-17	14 speed	7 D1 Cro
	(drug vs. saline)	signed-rank	Raclopride	3.42E-06	bins per mouse	7 D1-Cre
	dSPN event rate during movement (drug vs.	Wilcoxon	SCH	5.62E-18	24 speed bins per	7 D1-Cre
	saline)	signed-rank	Raclopride	1.10E-01	mouse	7 DI-Cle
	iSPN event rate at rest	Wilcoxon	SCH	4.48E-02	14 speed bins per	11 A2A-Cre
	(drug vs. saline)	signed-rank	Raclopride	1.80E-03	mouse	
	iSPN event rate during movement (drug vs.	Wilcoxon	SCH	1.77E-01	24 speed bins per	11 A2A-Cre
Extended Data	saline)	signed-rank	Raclopride	1.56E-05	mouse	
7f	dSPN event rate at rest	Wilcoxon	SKF	8.86E-18	14 speed bins per	7 D1-Cre
	(drug vs. saline)	signed-rank	Quinpirole	2.18E-10	mouse	
	dSPN event rate during movement (drug vs.	Wilcoxon	SKF	1.65E-25	24 speed bins per	7 D1-Cre
	saline)	signed-rank	Quinpirole	1.08E-08	mouse	
	iSPN event rate at rest	Wilcoxon	SKF	7.50E-24	14 speed bins per	11 A2A-Cre
	(drug vs. saline)	signed-rank	Quinpirole	2.14E-12	mouse	
	iSPN event rate during movement (drug vs.	Wilcoxon	SKF	4.27E-37	24 speed bins per	11 A2A-Cre
	saline)	signed-rank	Quinpirole	5.31E-10	mouse	
	Shuffle-subtracted dSPN proximal co-activtiy	Wilcoxon	SCH	1.66E-09	8 spatial bins	7 D1-Cre
	(drug vs. saline)	signed-rank	Raclopride	1.42E-03	per mouse	
	Shuffle-subtracted iSPN proximal co-activtiy	Wilcoxon	SCH	1.69E-02	8 spatial bins	11 A2A-Cre
Extended Data	(drug vs. saline)	signed-rank	Raclopride	1.59E-03	per mouse	
7i, j	Shuffle-subtracted dSPN proximal co-activtiy	Wilcoxon	SKF	1.94E-03	8 spatial bins	7 D1-Cre
	(drug vs. saline)	signed-rank	Quinpirole	5.59E-05	per mouse	
	Shuffle-subtracted iSPN proximal co-activtiy	Wilcoxon	SKF	6.12E-02	8 spatial bins	11 A2A-Cre
	(drug vs. saline)	signed-rank	Quinpirole	7.21E-07	per mouse	

Figure	Comparison	Test	p-va	alue	N-value	(bouts)	Num. Mice
			Forward	7.48E-03	Forward	206	
	Fraction of dSPN population activated	Wilcoxon	Right	1.40E-03	Right	200	12
Extended	(movement type vs. baseline)	signed-rank	Left	3.52E-04	Left	290	
Data			Groom	7.59E-02	Groom	314	
8b			Forward	2.20E-03	Forward	331	
	Fraction of iSPN population activated	Wilcoxon	Right	1.32E-03	Right	295	13
	(movement type vs. baseline)	signed-rank	Left	2.54E-04	Left	194	
			Groom	7.65E-01	Groom	339	
			Forward	1.88E-11	Forward	206	
	dSPN event rate change at	Wilcoxon	Right	4.83E-08	Right	200	12
Extended	movement (moving vs. resting)	signed-rank	Left	8.03E-17	Left	290	
Data			Groom	1.00E-03	Groom	314	
8c			Forward	1.21E-07	Forward	331	
	iSPN event rate change at movement	Wilcoxon	Right	2.41E-04	Right	295	13
	(moving vs. resting)	signed-rank	Left	1.08E-10	Left	194	
			Groom	3.94E-03	Groom	339	
Extended Data	dSPN ensemble similarity distribution for different movement type comparisons (Post 14-d vs. Pre-lesion)	Kolmogorov-Smirnov, Benjamini-Hochberg correction for multiple comparisons	1.72E-08		180 (Po comparison	esion) and ost 14-d) s of different bout types	17 (Pre-lesion) 12 (Post 14-d)
8f	iSPN ensemble similarity distribution for different movement type comparisons (Post 14-d vs. Pre-lesion)	Kolmogorov-Smirnov, Benjamini-Hochberg correction for multiple comparisons	1.16E-10		315 (Pre-lesion) and 195 (Post 14-d) comparisons of different movement bout types		21 (Pre-lesion) 13 (Post 14-d)
Extended Data	Distance between dSPNs activated on bouts of different movement types (Post 14-d vs. Pre-lesion)	Kolmogorov-Smirnov, Benjamini-Hochberg correction for multiple comparisons	2.38E-01		156 (Po comparison	esion) and ost 14-d) s of different bout types	17 (Pre-lesion) 12 (Post 14-d)
8h	Distance between dSPNs activated on bouts of different movement types (Post 14-d vs. Pre-lesion)	Kolmogorov-Smirnov, Benjamini-Hochberg correction for multiple comparisons	1.92E-02		305 (Pre-lesion) and 173 (Post 14-d) comparisons of different movement bout types		21 (Pre-lesion) 13 (Post 14-d)

Figure	Comparison	Test	N-va	alue
Extended	Contralateral bias (drug vs saline)	Two-way repeated measures ANOVA		nice, f 20 min each
Data		p-values		
9a-c		Dose	Time	Dose x Time
	Quinpirole	2.48E-01	3.90E-03	3.20E-03
	SKF	1.20E-03	<1.00E-4	<1.00E-4
	L-DOPA	<1.00E-4	<1.00E-4	<1.00E-4

Figure	Comparison	Test	N-va	alue
Fretondod	Contralateral bias during 40 min after drug or vehicle injection	Wilcoxon signed-rank	13 n	nice
Extended Data				
9e		Saline	Quipirole 6 mg/kg	SKF 1 mg/kg
	Quinpirole 6 mg/kg	2.40E-03		
	SKF 1 mg/kg	2.00E-04	2.73E-01	
	L-DOPA 1 mg/kg	5.00E-04	4.70E-01	6.85E-01

Figure	Comparison	Test	N-value				
	AIMS (drug vs saline)	Two-way repeated measures ANOVA	5 (saline-inj	-injected) ected) mice f 20 min each			
Extended Data	p-values						
9f-i		Dose	Time	Dose x Time			
91-1	Axial	<1.00E-4	<1.00E-4	<1.00E-4			
	Orofacial	<1.00E-4	<1.00E-4	<1.00E-4			
	Limb	3.74E-02	<1.00E-4	1.08E-02			
	Total	<1.00E-4	<1.00E-4	<1.00E-4			

Figure	Comparison	Test	N-value	
Extended	AIMS	Wilcoxon signed-rank	13 mice	
Data	Extended p-values			
9j		L-DOPA 1 mg/kg	L-DOPA 6 mg/kg	
-	L-DOPA 6 mg/kg	2.00E-03		
	L-DOPA 10 mg/kg	2.00E-04	1.32E-02	